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Abstract— Widely used over the Internet to encrypt traffic,
HTTPS provides secure and private data communication between
clients and servers. However, to cope with rapidly changing and
sophisticated security attacks, network operators often deploy
middleboxes to perform deep packet inspection (DPI) to detect
attacks and potential security breaches, using techniques ranging
from simple keyword matching to more advanced machine
learning and data mining analysis. But this creates a problem:
how can middleboxes, which employ DPI, work over HTTPS
connections with encrypted traffic while preserving privacy?
In this paper, we present SPABox, a middlebox-based system
that supports both keyword-based and data analysis-based DPI
functions over encrypted traffic. SPABox preserves privacy by
using a novel protocol with a limited connection setup over-
head. We implement SPABox on a standard server and show
that SPABox is practical for both long-lived and short-lived
connection. Compared with the state-of-the-art Blindbox system,
SPABox is more than five orders of magnitude faster and requires
seven orders of magnitude less bandwidth for connection setup
while SPABox can achieve a higher security level.

Index Terms— DPI, middlebox, privacy preserving.

I. INTRODUCTION

HTTPS is a popular Internet protocol which uses Transport
Layer Security (TLS) or its predecessor, Secure Sockets

Layer (SSL) to encrypt communication between clients and
servers to ensure data integrity and privacy.

Traditionally, many middleboxes that provide deep packet
inspection (DPI) functionalities are deployed by network
operators to detect attacks by searching for specific key-
words or signatures in non-encrypted traffic [19]. As malwares
use various concealment techniques such as obfuscation, and
polymorphic or metamorphic strategies to try to evade detec-
tion [13], both industry and academia have considered adding
more advanced machine learning and data mining analysis
in DPI [7], [11], [45]. For example, both Symantec and
Proofpoint claimed that with machine learning, they are able to
detect more attacks and threats than systems without machine
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learning technology [8], [9]. Nevertheless, with the growing
adoption of HTTPS, existing approaches are unable to perform
keyword or signature matching, let alone advanced machine
learning analysis for malware detection of the encrypted
traffic.

Naylor et al. [34] tried to tackle the problem by proposing
mcTLS which allows sharing of the encryption keys with
middlebox services. However, this approach cannot protect
users’ private information from a service provider who deploys
middleboxes. As a matter of fact, service providers have been
using their deployed middleboxes to capture Internet traffic for
surveillance and marketing purposes [5], a practice that has
been widely criticized. Sherry et al. [38] took the first step
to bridge the gap by introducing Blindbox, a system which
supports keyword matching and regular expression evaluation
over encrypted traffic. They realized it by developing a novel
searchable encryption scheme and experimentally proved its
feasibility. However, its scope of functionality is limited by the
underlying cryptographic method. Specifically, Blindbox still
needs to decrypt the traffic at a middlebox in order to perform
regular expression evaluation which may reveal information
that end users consider private. In addition, it cannot support
complex machine learning analysis for malware detection.
Furthermore, the overhead of connection setup makes Blind-
box impractical. A follow-up work in [30] tried to address the
high setup overhead by employing a modified architecture.

In this paper, we present SPABox, the first middlebox
based system that supports both signature and data analysis
based DPI functionalities over encrypted traffic with a limited
overhead. Compared to [30], SPABox achieves an even greater
reduction in the setup overhead under more general conditions
while [30] only applies to an enterprise environment. With
SPABox, when two end points create a communication link,
there is no involvement of the middlebox, which preserves
its transparency as in other existing middlebox deployments.
SPABox accomplishes these by introducing a novel, and yet
simple, efficient encryption strategy built on top of the Discrete
Logarithm Problem [31] and a novel protocol for secure
communication between two parties. Although our protocol
has a mapping of encrypted keywords (and partial keywords)
to their plain text representations, SPABox can neither decrypt
the traffic, nor infer any private information, which is stronger
than the privacy models in the previous work [38].

Specifically, SPABox supports three types of operations:
keyword matching (Section IV-B), regular expression eval-
uation (Section IV-C) and malware detection via machine
learning (Section IV-D). The main ideas of our design behind
these three operations are 1) instead of matching keywords
directly, we tokenize the keywords so that we can build a
Trie-like structure to accelerate searching and matching at a
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DPI middlebox, 2) regular expressions are processed at the
receiver side, and garbled circuits and oblivious transfer are
used to protect the privacy of both traffic and rule sets, and
3) we utilize the homomorphic properties on addition and
scalar multiplication, respectively.

To validate our design, we analyze the security guarantees
of our design, implement SPABox on a standard server and
evaluate its performance with several real data sets and traffic.
We consider performance metrics such as throughput, band-
width and memory overhead on the sender, middlebox and
receiver sides, and show that SPABox is practical for both
long-lived and short-lived connections.

The rest of the paper is organized as follows. Section II
describes the security models and protocol requirements.
Section III presents the proposed system architecture,
followed by detailed protocol designs in Section IV. Section V
discusses the implementation of our system. We evaluate
the performance in Section VI to show the effectiveness
and efficiency of SPABox. Section VII surveys the related
work and Section VIII discusses possible extensions,
alternative approaches, and differences between our scheme
and Blindbox, followed by conclusions and future work in
Section IX.

II. SECURITY MODELS AND PROTOCOL REQUIREMENTS

The goal of this work is to protect the privacy of user
traffic from a middlebox which performs DPI while leverag-
ing advanced DPI functionalities to detect malicious traffic.
In other words, the middlebox can detect attacks over
encrypted traffic with rule sets and well-trained machine
learning (ML) models, which are provided by a (third party)
rule generator. In this section, we first describe the security
models and then outline the protocol requirements.

A. Security Models

In the scenario being considered in this work, we assume
that 1) the rule generator is honest, and 2) the middlebox
is honest-but-curious, i.e., it will implement the rules and
follow the protocol honestly but may attempt to infer private
information from the encrypted traffic during the execution
of DPI.

Thus the goal of our proposed system is to realize the DPI
procedures while protecting the data privacy of endpoints.
More formally, the security goals that SPABox is designed
to achieve are summarized as follows:

1) To guarantee the confidentiality of the unmatched traffic,
that is, the traffic that doesn’t match the known attack
keywords in the rule set will remain secret from the
middlebox.

2) To make sure that no private information can be inferred
by the middlebox and all analysis results can only be
seen by the clients.

This first goal indicates that the middlebox is allowed to learn
only the data that are exactly identical to the known suspicious
keywords in the middlebox rule set, and the second goal aims
to make the middlebox unable to apply data analysis technique
to infer other private information about the traffic, such as
leakage-abuse attacks [20].

B. Protocol Requirements

Based on the above security models, we identify a few
requirements that our protocol should meet. As our goal is
to provide privacy of user data at a middlebox over HTTPS
connection, first we require SPABox to maintain and extend
the properties provided by existing TLS/SSL as follows.

Private Connection: All traffic should be encrypted with the
secret key negotiated at the beginning of the session, and the
negotiation should be both secure and reliable. Note that only
the endpoints can read the unencrypted traffic, while all the
traffic exposed to the middlebox should remain encrypted at
all times.

Identity Authentication: The identity of endpoints can be
authenticated by each other and even the DPI appliance. This
can be achieved using public key cryptography and made
optional to reduce overhead.

Reliable Connection: The integrity of each message trans-
mitted by one party of the session should be able to be verified
by other parties in this session, including trusted middleboxes,
to detect unauthorized modification and prevent undetected
loss during the transmission.

Besides, we also require SPABox to meet the following new
requirements:

Middlebox Transparency: During communication, clients
typically do not communicate directly with the DPI middle-
boxes in existing deployments. In order to comply with current
deployments, we try to preserve the transparency of the DPI
appliance in our protocol.

Privacy Preservation: In our case, attackers at middleboxes
should never be able to read the plaintext exchanged between
two endpoints nor extract private information from the data
using analysis techniques. The TLS/SSL session key should
never be exposed to the attackers at a middlebox under any
circumstances.

Endpoint Verification: For the sake of security, besides being
able to authenticate the identity of the other communicating
party in the session, one should be able to verify whether the
other party follows the protocol to prevent her from behaving
maliciously.

Function Variety: The protocol should be general enough
to support both signature or keyword based and data analysis
based DPI functionalities.

Minimum Overhead: Finally, our protocol should operate
without a substantial overhead, including bandwidth, latency,
computation, etc. Specifically, the latency and bandwidth
overhead to establish connections should be small in order
to support short, independent flows and a large rule set. The
computational overhead at the endpoints should be limited.
We also intend to make the computation independent of any
specific hardware platforms such that all users can benefit from
our protocol.

III. SYSTEM ARCHITECTURE

Fig. 1 shows the system architecture, and the highlighted
boxes indicate components added by SPABox. As in the
previous work [38], there are four parties: sender (S),
receiver (R), middlebox (MB) and rule generator (RG).
In order to define an attack, the RG such as Symantec and
McAfee usually provides a list of attack rules. Each of the
attack rules contains a set of keywords and possibly other
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Fig. 1. SPABox system architecture.

information such as offset of each keyword, distance between
two pattern matches and a regular expression. Besides, the RG
also provides a trained model for classifying the encrypted
traffic to decide whether the traffic contains malicious pro-
gram. The MB are usually deployed by network operators like
AT&T [41]. The security threats in the traffic can be identified
in two ways: a) The MB compares the encrypted traffic with
the rule set provided by the RG, and observes a matching
between the traffic and one of the attack rules in the rule set;
b) The MB classifies the encrypted traffic with the trained
model provided by the RG and the results from the classifier
are used by R to decide whether the traffic contains malware.

When S and R want to establish a HTTPS connection in a
network monitored by the MB, the following steps take place:

Connection Setup: When S and R try to communicate,
they first run SPABox handshake to exchange SSL session
key kssl just as an SSL handshake. Besides, during the
SPABox handshake process, S and R also need to negotiate
7 more parameters (SPAPara), g, n, r, s, N2, salt and a hash
function H(·), all of which are used for encryption, decryption
and detection in the SPABox protocol. Note that only S and R
are involved in an SPABox handshake which bootstraps off
the existing SSL handshake, preserving the MB transparency
property.

Sending Traffic: At S, two logical connections are set up,
to be referred to as an SSL connection and an SPA connection,
respectively. On the SSL connection, S encrypts the traffic with
unmodified SSL. On the SPA connection, S makes a copy of
the traffic, tokenizes it and then encrypts the tokens using
the proposed approach based on Discrete Logarithm Problem
(Section IV-A). To support malware detection, tokens need to
be pre-processed before getting encrypted(Section IV-D).

Detection at MB: There are two tasks for MB to perform
once it receives the encrypted tokens from S over the SPA
connection. a) The MB compares the encrypted traffic with the
rule set provided by the RG (including keyword and regular
expression); b) The MB classifies the encrypted traffic with
the trained model provided by the RG;

If there is a match between the traffic and the rule set
and there is no regular expression in the corresponding attack
rule, the MB can choose to drop the packet and inform
administrator or issue a warning just as what a regular MB
would do over unencrypted traffic. If a regular expression
needs to be further evaluated, it will be forwarded to R
for further processing (Section IV-C). For malware detection
using ML, the classification results should not be seen by
the MB. Instead, they should be sent to and can only be
seen at R (Section IV-D). The reason to do so is to prevent
attackers at the MB from analyzing data using scripts (Protocol
Requirement Privacy Preservation in Section II-B).

TABLE I

PROTOCOL PARAMETER LIST

Receiving Traffic: Upon receiving SSL traffic at R, R would
decrypt and authenticate the traffic using regular SSL. Then
R will tokenize and encrypt the recovered plaintext which will
be compared with the traffic from the SPA connection. The
reason we proceed in this way rather than decrypting and deto-
kenizing the traffic from the SPA connection for comparison
is that encryption is much faster than decryption in our pro-
tocol. By comparing the ciphertexts generated from the traffic
over the SSL connection against the encrypted tokens received
from the SPA connection, R can determine whether S in this
session follows the SPABox protocol correctly, including both
keyword matching and malware detection using ML (Protocol
Requirement Endpoint Verification in Section II-B). If there is
any discrepancy, R may think S is an attacker and immediately
drop the connection. Otherwise, R may process information
forwarded by the MB containing the classification results and
regular expressions to decide whether the traffic from S over
the SSL connection is malicious or not.

IV. PROTOCOL DESIGNS

In this section, we give a detailed description of our
proposed protocol. First, we describe a hard problem based
on which we construct our protocol. Then we present the
encryption procedures on how our protocol handles Keyword
Matching, Regular Expression and Malware Detection via
Machine Learning, respectively. Table I summarizes the
parameters that each entity uses, where d is used to compute
pseudorandom salt, (λ, μ) is the private key pair for decrypting
malware detection classification results (see more detail in
Section IV-B, IV-C and IV-D) and the rest has been described
earlier (Section III).

A. Intuition

Blindbox requires interactive initialization between a sender
and a middlebox (Protocol Requirement Middlebox Trans-
parency in Section II-B) which results in a slow connection
setup. In order to avoid such an interaction, public-key cryp-
tographic primitive is preferred in our protocol. Therefore,
the key to design a protocol that meets our requirements
on both efficiency and security is to select a suitable com-
putational hard problem on which the protocol to be built.
As mentioned in the protocol requirement, we aim to design a
protocol with the following three properties: a) it doesn’t rely
on any specific hardware support but can work efficiently for
all parties to process the data; b) the MB is able to perform
necessary operations for different kinds of DPI functionalities
over encrypted traffic; c) no information exchange is required
between clients and the MB during connection setup.

Note that the third property can’t be satisfied if we use any
searchable encryption schemes [15], [39] since these schemes
require the MB to obtain search keys from clients, which
may become the major performance bottleneck. Taking all
these three properties into consideration, we construct our
encryption strategy based on the intractability of Discrete
Logarithm Problem defined as follows.
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Definition 1 (Discrete Logarithm Problem): Given a finite
group G, an element g ∈ G and an element b in the subgroup
generated by g, i.e., 〈g〉, find an integer x such that gx = b.
Such an integer x is the discrete logarithm of b to the base g.
The Discrete Logarithm Problem is one of the most important
one-way functions used in modern asymmetric cryptography.
Many public-key algorithms are built based on it, such as the
widely used Diffie-Hellman key exchange protocol [23] and
the ElGamal encryption scheme [24].

Another two important and useful properties when encrypt-
ing message m as an element gm in G are the homomorphic
features on addition and scalar multiplication. In a nutshell,
these two properties enable our protocol to work directly over
the encrypted traffic without decrypting the payload at the MB.
Assume c1 = gm1 and c2 = gm2 , where m1 and m2 are
plaintexts. The two properties can be summarized as follows:

• Homomorphic Addition: the product of c1 and c2 gives
gm1+m2 which encrypts message (m1 + m2).

• Homomorphic Scalar Multiplication: raising c1 to the
power of m3 produces gm1·m3 which encrypts message
m1 · m3, where m3 is another plaintext in the same
message space as m1, m2.

B. Keyword Matching

In this subsection, we present our protocol design for
performing keyword matching at S, R and the MB. Note
that only few minor changes need to be made at the MB,
S and R to support the other two functions to be described in
Section IV-C and IV-D. An attack rule may contain multiple
keywords as well as position information of these keywords.
Only if all the keywords in one attack rule are matched with
the correct offset, we consider this attack rule is matched.

1) On the Sender Side: Fig. 2 shows the architecture on
the SPABox sender side. The first step is to tokenize the
traffic to be sent over the SPA connection using a fixed-length
sliding window. For example, assume the traffic to send is
“NETWORKING” and we use 5 bytes per token, the tokens
generated are “NETWO”, “ETWOR”, “TWORK”, “WORKI”,
“ORKIN” and “RKING”. If we tokenize the keywords in the
rule set at the MB in a similar way, we can search for keywords
whose length are equal to or greater than 5. For instance, say
one of the keywords is “NETWORK”. If the MB tokenizes this
keyword using a window of 5 bytes long, two keyword tokens
“NETWO” and “TWORK” are generated. Then the MB can
compare all the tokens received over the SPA connection with
these two keyword tokens and see if there are two received
tokens that are separated by 2 tokens and equal to these two
keyword tokens respectively. The reason we choose to tokenize
the traffic in this way will be discussed in Section IV-D.
In our implementation, we use 5 bytes as the sliding window
length. The reasons that we choose to use 5 bytes are (i) the
message space is large enough for our encryption to be secure;
(ii) longer sliding window will result in slower encryption
speed. Note that a token needs to be converted into an integer
of proper format (i.e., mpz_t) before being encrypted.

After tokenization, S can encrypt each token with our
encryption scheme based on Discrete Logarithm Problem
(feature selection module is used in Section IV-D). Assume
the plaintext for a token obtained from the tokenization is t,

Fig. 2. SPABox sender architecture.

the ciphertext c is given as:

c = gsalt·t mod n (1)

where n is a prime number, g is an element in multiplicative
group Z∗

n and salt is an element in the additive group Zn,
all of which are defined during the connection setup phase.
One may find that our encryption scheme is similar to the
well-known Paillier encryption method [35], but there are
major differences, and we will discuss them in Section VIII.
Specifically, salt is for randomizing the ciphertext, that is,
ensuring that no two ciphertexts consecutively encrypting the
same message are identical (similar as randomized encryption
methods), and therefore makes the encrypted tokens resis-
tant to frequency analysis. However, if a new random salt
is selected for each token, it makes the resulting protocol
difficult to support efficient keyword matching operation at
the MB, and also pre-computing gsalt mod n is no longer
possible. To address this, in our protocol, an initial salt0,
d ∈ Zn are defined. A counter table is also defined for
storing km, the number of times that each plaintext m has
been encrypted so far in the SPABox tokenization module.
Therefore, to encrypt a token t, S first looks up the number kt

(i.e., how many times token t has been encrypted so far) in
the counter table and then encrypts t as c = gsaltk·t mod n
where saltk = salt0 + ktd mod Zn. Note that k is initially
set to one.

For security purpose, the bit length of n should be at
least 1024 (2048 recommended by NIST). This unfortunately,
will lead to huge communication overhead. To maintain the
security level while reducing the overhead, we hash each token
t using a cryptographic hash function H(·) after tokenization
and set n to 160 bits so that each token can be represented
with 20 bytes after encryption. In our implementation, we use
a hash function SHA-1 with output size of 160 bits. This is a
valid step because the message space (40 bits) of a token is
greatly smaller that 160 bits. With this modification, S encrypts
a token by computing

c = gsaltk·H(t) mod n (2)

where saltk = salt0 + kd mod Zn. Note that this ensures at
least two consecutive encryptions of the same message won’t
produce the same ciphertext (similar as randomized encryption
methods), and therefore makes the encrypted tokens resistant
to frequency analysis. Unfortunately, the above design is not
secure enough (Section IV-E) when the first encrypted token
is identified as malicious keyword (i.e., one of the keyword
tokens in the rule set). To make our protocol secure against
this case, S is required to pick out a random number r of
benign tokens and set this sequence of tokens as the prefix
preceding the tokenized traffic over the SPA connection. The
source from which S selects the benign tokens can be a trusted
third party like Certificate Authority (CA) or any system file.
We call this process Benign Prefix Padding (BPP).

After the tokens are encrypted, they are sent out
together over the SPA connection with auxiliary informa-
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tion (AUXInfo) gsalt0 , gd, r, n and the hash function H(·),
which are used by the MB for keyword matching. One can
think of the AUXInfo as public keys for one particular session.
For simplicity of notation, we denote the Eq. 2 as enc(t, k),
where k is the times that token t has appeared in the traffic
so far. To prevent the counter table from growing too large,
S resets salt0 every M distinct token sent, where M can be
set to a large number, say 10M, so as to keep the overhead
for resetting at a minimal level.

2) On the Middlebox Side: In order to support keyword
matching, the MB needs to perform the following operations.

Rule Preparation: The keywords in the rule set need to
be processed. Upon receiving the rule set from the RG,
the MB first tokenizes all the keywords in the rule set using
a window of the same length which R uses to tokenize
the traffic sent over the SPA connection. For a keyword of
length l, � l

5� keyword tokens are generated. Then the MB
would transform all tokenized keywords into large numbers
as mentioned earlier (i.e., in mpz_t format).

When S tries to send traffic to a R, the MB would receive
from S a set of AUXInfo. With such information, the MB
can hash and then encrypt all the tokenized keywords w as
enc(w, 1). The reason k = 1 here is that the MB has not yet
seen keyword w in the traffic. It is worth noting that in our
protocol, no information exchange between S and the MB is
needed during the rule preparation step, while this is the major
performance bottleneck in [38]. We will compare the overhead
in Section VI.

Keyword Matching: With encrypted keyword tokens,
the MB can perform keyword matching as follows. First
consider a simple example with one received encrypted
token enc(t, 1) and one encrypted keyword token enc(w, 1).
To check if t is equal to w, the MB only needs to check if
enc(t, 1) is equal to enc(w, 1). Upon matching, the MB simply
calculates enc(w, 2) as enc(w, 1) · gd0·w mod n, and replace
enc(w, 1) with this new value since the next time S sends
token t over the SPA connection, the corresponding ciphertext
would be enc(t, 2). Next, we extend our keyword matching
example with multiple encrypted keyword tokens and one
received encrypted token. In order to support searching over
multiple keyword tokens, the MB needs to maintain a token
table which records the number of times that each keyword
token has appeared in the traffic. Once there is a match,
the MB can re-encrypt the matched keyword token as in the
one keyword token case, and replace the matched entry in
the token table with the new encrypted keyword token. But
a practical rule set may have hundreds of encrypted keyword
tokens [10], how can the MB perform an efficient search?

The first idea is to build up a searching tree with each
element being an encrypted keyword token. When receiving
an encrypted token from S over the SPA connection, the MB
can look up the tree to find if there is a match, which makes
the searching time logarithmic in the number of keyword
tokens. However, even with logarithmic searching time, this
would still result in too much overhead: a) With more than
10,000 keywords in a rule set which is typical (the number of
distinct keyword tokens could be even more), it may take more
than 15 comparisons to find a matching. b) Since encountering
a malicious keyword is relatively rare, computation power may
be wasted on searching for an encrypted token not present in

the searching tree. c) Since keywords are tokenized, matching
a rule may needs multiple searches over the tree. In our rule set
from Snort Emerging Threats [10], there are up to 81 keyword
tokens for one rule.

On the contrary, our solution is simple yet efficient.
Instead of building a searching tree, we use a Token Hash
Table (THT). The key for each entry is the hash value of each
encrypted keyword token w, and the value of each entry is a
tuple (enc(w, nw), w). The reason we need to store the value
of w itself is for breaking ties in case hash table collisions
happen. Moreover, THT can be built based on the token table
which the MB maintains to count the number of appearances
of each keyword token. Once a match is established, the MB
can remove the corresponding key and value pair from THT,
re-encrypt the ciphertext and insert it as a new entry.

Up till now, we have discussed how to efficiently search for
an encrypted token in a rule set with hundreds of keyword
tokens at the MB. The questions left to answer are
How to efficiently combine multiple matched keyword tokens
to one keyword since keywords are also tokenized by the
MB? How to map multiple matched keywords to a specific
rule as one rule may contains multiple keywords?

We attempt to kill two birds with one stone. The insight
here is that once the MB finds a matched keyword token,
it can reduce the search range for the next token, which
is either the first token of the next keyword in the same
rule or the next keyword token together with the matched
keyword token constitute a part of one keyword. For example,
if there are only two keywords in the rule set with first five
bytes as “NETWO”, i.e., “NETWORK” and “NETWORR”,
and there is a matching token “NETWO” in the traffic, the MB
only needs to find out if the third encrypted token after
“NETWO” is “TWORK” or ”TWORR”. Therefore we can
build a Hierarchical Hash Table (HHT) as shown in Fig. 3 to
keep the information about how each rule is tokenized. The
first level of the HHT has only one hash table, each entry of
which corresponds to the first five bytes of the first keyword
in each rule. Each entry of the first level hash table also points
to a new hash table which contains all possible following
keyword tokens, and so on. The position information of each
keyword token can be easily embedded in HHT as well. Since
S tokenizes the traffic using a sliding window, the offset of
each received encrypted token over the SPA connection can
be easily deduced.

The HHT indicates how each rule is structured with key-
word tokens and can be pre-built or even hardcoded in the MB
once it receives the rule set from the RG, while the THT needs
to be built specifically for each connection. Observe that the
HHT could be further compressed by combining hash tables
with same entries, and we leave it as our future work. The
memory overhead and the time to setup THT will be evaluated
in Section VI.

3) On the Receiver Side: In order to prevent S from being
malicious and sending illegal tokens, R upon receiving traffic
from the SSL connection and traffic forwarded by the MB
over the SPA connection can first decrypt the SSL-encrypted
traffic, and then tokenize and encrypt the plaintext-form SSL
traffic. R can then compare the ciphertexts generated from
the SSL traffic against the encrypted tokens from the SPA
connection; R also needs to check if the AUXInfo sent by S
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Fig. 3. Hierarchical hash table.

is valid by comparing it with its own copy. Only if both match,
the traffic received over the SSL connection is considered
secure. Decryption of the SSL-encrypted traffic can be done
using the standard method specified in SSL. The reason we
proceed in this manner rather than decrypting and then deto-
kenizing the traffic from the SPA connection for comparison
is that tokenizing and encrypting plaintext with Eq. 2 together
are much faster than decrypting the traffic from the SPA
connection. Moreover, R can start this comparison process as
long as it gets the SSL traffic and the first encrypted token
over the SPA connection. Specifically, R can first decrypt,
tokenize and then encrypt the SSL traffic. Whenever R receives
an encrypted token over the SPA connection, it can compare it
right away. Nevertheless, this process may cause some delay
at R side but we consider it as an acceptable trade-off.

C. Regular Expression Evaluation

The reason for evaluating regular expressions is twofold.
First, some rule sets require evaluation of regular expressions
besides keyword matching. By enabling such operations, all
of the attack rules of many public and industrial rule sets can
be addressed [38]. For instance, in our rule set from Snort
Emerging Threats [10], some of the rules are allowed to be
written using Perl compatible regular expressions. Take rule
#74 in emerging-info.rules as an example:
alert http $HOME_NET any→$EXTERNAL_NET any
flow: established, to_server;
content: “8866.org”;
pcre: “/Host\x3A[ˆ\r\n]∗\x2E8866.org/Hi”

In this example, regular expression evaluation denoted by
action “pcre” would be triggered if a match of the keyword
“8866.org” can be found in the traffic. Secondly, regular
expression can help the MB detect keyword that are less than
5 bytes long. Recall that S tokenizes the traffic using a 5-byte
long sliding window so that the MB can search for keywords
whose length are equal to or greater than 5. However, if one
rule contains keywords that are shorter that 5 bytes, methods
mentioned in Section IV-B would not work. In our rule set,
more than 25% of the keywords are shorter than 5 bytes long.
To enable matching on keywords that are shorter than 5 bytes
long, the MB can build one regular expression out of the
keywords that are shorter than 5 bytes long per rule easily
to make the keyword searching problem a regular expression
evaluation problem. Therefore, in our case, matching regular
expression enables full keyword matching functionality.

Next, we try to answer How to efficiently evaluate regular
expressions over encrypted traffic? One strawman solution is
to embed the SSL key kssl in the encrypted tokens, and once
there is a match between an encrypted token sent over the

SPA connection and one keyword token at the MB, the MB can
extract kssl by re-encrypting the matched token, say enc(t, nt)
with nt +1, and XORing it with enc(t, nt +1)⊕kssl which is
sent as a pair together with enc(t, nt) over the SPA connection
by S. However, three problems may arise in this solution: a)
The traffic can get doubled; b) Matching of a partial keyword
token would would reveal the SSL key to the MB; c) The MB
is granted with too much power for some users.

Especially, the second one breaks the security requirement.
For instance, if the only keyword at the MB is “NETWORK”
and the traffic contains “NETWORR”, which doesn’t match
the keyword, the SSL key would still be exposed to the MB
since the token “NETWO” matches. Therefore, we need a
protocol which can perform regular expression evaluation and
preserve user data privacy at the same time.

Normally, a regular expression can be converted to a deter-
ministic finite automata (DFA) with an accepting state F
indicating that the input string contains malicious factors if
this DFA finishes in state F . A DFA will take as input
the encrypted traffic over the SPA connection one byte at a
time [25]. One way to execute the regular expression in a
privacy-preserving manner is encrypting each single character
using Eq. 2. However, this will render the resulting protocol
vulnerable to brute-force attack. Rather than revealing SSL
key to the MB such that the MB can decrypt the traffic to run
regular expressions, we propose to send the regular expression
to R and let R decrypt the SSL encrypted traffic and run
the regular expression matching algorithm, which just causes
small overhead (Section VI). If the corresponding DFA can
achieve an accepting state, R would know that S is malicious
(a hit of an attack rule) and can drop the packet. If the
RGs don’t want to publicize their rule sets for any practical
reasons, Yao’s garbled circuits [44] and 1-out-of-2 oblivious
transfer (OT) [22] can be used to hide the regular expression
from end users.

To further improve the performance of our protocol, instead
of using Yao’s garbled circuit technique which is designed for
general circuits, we apply the efficient garbling technique that
is customized for DFAs from [32]. Note that garbling of the
DFA’s can be done offline before the connection setup since
the garbling process does not require information from other
parties but the MB itself. Therefore, it would not affect the
runtime performance of the MB.

It is worth pointing out that the MB must send a “newly”
garbled DFA for each match, even if the same regular expres-
sion has been previously matched. This ensures that R doesn’t
learn that the same rule is matched repeatedly. Note that this
doesn’t mean that the DFA needs to be garbled on the fly for
each match. Instead, the MB can pre-compute and store them
for future usage.

One practical assumption in our protocol is that the RG will
provide the MB with various DFAs and the MB will send the
garbled DFA to R without letting R know which DFA is being
executed. With this assumption, in our protocol, R would not
have enough information to figure out the structure of any
specific DFA, because R is not able to learn what garbled
DFA it has computed and whether the garbled DFAs it has
computed so far are correlated or not.

Recall that a garbled DFA will be sent to R when the
traffic being transmitted has matches that can trigger a regular
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expression evaluation. One might be concerned that an attacker
can cause the MB to send out many garbled DFAs to R just
by sending traffic that matches a token that triggers a regular
expression evaluation, which would turn into DoS on R’s
network link. Note that for this kind of attack to be achieved,
the attacker needs to have the knowledge about what keywords
can trigger regular expression evaluations. However, in this
paper, we assume that the information of keywords is kept
secret from users and it is only known to the (trustworthy) rule
generator. In the meantime, since the underlying encryption on
keywords can provide semantic security, the attack can learn
nothing about the keywords themselves. Hence, this kind of
attack is eliminated from the scenario being considered in the
paper.

Another concern might be that since R runs the garbled
DFA with somewhat plaintext payload (i.e, the payload is
not encrypted but replaced with a random string input to the
garbled DFA), R will at least learn the payload that apparently
matched a regular-expression based rule. This can be prevented
by adding dummy operations on the DFA. As a result, it will
confuse R when running the garbled DFA with the somewhat
plaintext payload.

D. Malware Detection via Machine Learning

In this section, we show how our protocol enables malware
detection over encrypted traffic using ML analysis. Recall that
for keyword matching, S needs to tokenize the traffic using
a sliding window, which is also called n-gram or shingles.
Over the past few decades, researchers have proposed to use
n-grams to represent features for malware detection using
ML methods [29], [40]. In our protocol, we will use Support
Vector Machine (SVM) [36].

1) On the Rule Generator Side: The primary job of the
RG is to train a ML model (SVM model). Assume that the
RG has two sets of files, which are composed of a collec-
tion of malware software and benign programs, respectively.
In particular, malware programs consists of variety of forms of
hostile or intrusive software, such as Worms, Trojans Horses
and Virus [13]. In order to build representation for all files in
each set, the RG should extract n-grams (features) for all files
in each set which will act as the set signature. To reduce the
feature dimension in our protocol, we require the RG to count
the frequency of each n-gram within each set, and use top
K most frequent n-grams as the features representing that set.
Then the RG can train a SVM model and obtain the necessary
parameters w and b for the following decision function

f(x) = w� · x + b (3)

where x is the feature vector and w is a m-dimensional vector
(w1, w2, · · · , wK). Note that the pair (w, b) can be updated
periodically by the RGs as they receive new malwares reports
everyday. We also discuss how SPABox can support other ML
model in Section VIII-B.

2) On the Sender Side: In order to perform ML at the
MB, the object’s features need to be extracted first. However,
it is not trivial for the MB to extract one input object’s
features since it is highly possible that not all important
features are malicious keywords while the MB can only know
the patterns of those keywords, guaranteed by our keyword
matching protocol. Hence, in our protocol, the job of selecting

features of an input object is shifted to S who could do this
at almost no cost by using the counter table which stores the
frequencies of all tokens that have appeared so far. Specifically,
S first uses the feature selection module shown in Fig. 2 to
select as features, say the top 400 most frequent n-grams,
i.e., K = 400. Then S encrypts these n-grams, that is, for
i = 1, · · · , K , S encrypts xi as x′

i = gs·xi mod N2 where
N = pq with p, q as two prime numbers of equal bit-length
and s is a random element in ZN . After that, S sends the
encrypted features over the SPA connection together with gs

and N2 so that the MB can perform classification. To ensure
desirable security, we pick p, q of length at least 1024-bit.
Nevertheless, the overhead incurred by using 1024-bit long p
and q is quite small in practice. Note that one can implement
their own feature selection module as long as the RGs can
provide a corresponding trained model.

3) On the Middlebox Side: The most notable feature of
SVM is kernel function, which serves as a mapping of data
to improve its resemblance to a linearly separable set. In our
work, we use simple linear kernel [27], and we will discuss
other feasible kernel functions in Section VIII-B. Recall that
each encrypted n-gram is of the form as Eq. 2.

Upon receiving encrypted n-grams (features) from S,
the MB performs the following steps using a well-trained
SVM model: (i) for i-th input to the decision function (with
i = 1, · · · , 400), raise the encrypted n-gram x′

i to the power of
value wi, that is, x′

i
wi = gs·xi·wi ; (ii) multiply together all the

intermediate results generated in the former step; (iii) multiply

the result generated in step (ii) by gsb and then by gs N2
2 (this

multiplication enables R to learn the classification sign) to
give the classification result in an encrypted form, namely
gs (
�K

i=1 wi·xi+b+ N2
2 ). Finally, the MB can send the result

returned in step (iii) to R. The correctness of the encrypted
classification result is guaranteed by the homomorphic prop-
erties stated in Section IV-A.

4) On the Receiver Side: In order to get the classification
result, all R needs to do is to decrypt the classification
result sent by the MB using (λ, μ) (private keys in Paillier
cryptosystem [35]) and then check whether it is greater or less
than 0. Unfortunately, the latter step can’t be done directly,
since in our encryption method, the tokens (in mpz_t format)
are non-negative. However we observe that the classification
result output by Eq. 3 is within the interval [−N2

2 , N2

2 ].
Therefore, in order to recover the sign of the classification
result, R can decrypt the classification result and then compare
it with N2

2 . If the recovered value is greater than N2

2 , then R
knows that it is a positive result; otherwise, it is a negative
result. The correctness of this operation is straightforward,
because if f(x) = w� · x + b > 0, then f(x) + N2

2 > N2

2 .

E. Security Guarantee

Keyword Matching: Recall that in keyword matching oper-
ation, S needs to tokenize the traffic, perform BPP and then
encrypt the tokens using Eq. 2. While on the MB side,
it checks if there is any encrypted keyword token in the rule
set that is equal to the received encrypted tokens over the SPA
connection.

In Section IV-B, we’ve mentioned that BPP is designed
to avoid the case where the first few encrypted tokens are
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malicious keyword tokens. Without BPP step, the resulting
protocol becomes insecure. To show that, assume that the
generated tokens are “NETWO”, “ETWOR” and “TWORK”,
denoted as m1, m2 and m3 respectively, and the first token
m1 is a malicious keyword token while the other two are
benign. Thus, the MB can learn what the first encrypted token
is. As the MB also knows salt0, d and the counter k for
each distinct token starts from 1, the MB can learn m2 by
picking message m′

2 = ETWO∗, encrypting it and comparing
the resulting ciphertext with the received encrypted token
gsalt1·m2 , where ∗ is one byte and can have up to 256 possi-
bilities. m2 cannot be a malicious keyword token; otherwise
the MB would find a match against the rule set. Apparently,
by doing this repeatedly, the MB can definitely recover m2

within constant time (i.e., 256 comparisons in the worst case),
which renders the protocol insecure. Similarly, the MB can
learn all the following tokens. However, if S applies BPP to
the tokenized traffic before transmitting them over the SPA
connection, this undesirable scenario can be avoided because
r is a random number which the MB cannot learn. As the
MB cannot learn the encrypted form of these r benign tokens,
the MB is not able to work out what those benign tokens are
and thus can’t discover the patterns of the encrypted tokens
as it does, if S transmits without the BPP step.

To find the suitable value of r, we again consider the above
situation where the first token is a malicious keyword token in
the rule set. After applying BPP, the first r tokens are benign
and the (r + 1)-th token is a malicious token. Note that the
goal of applying BPP is to disturb the original patterns of
encrypted tokens. In other words, BPP is expected to bring in
benign tokens that will also appear in the traffic. We denote
this event by C and the probability that C happens is denoted
by Pr[C]. Assume that each token picked by the BPP process
will appear in the original encrypted token sequence over the
SPA connection with probability p. Then Pr[C] = 1−(1−p)r.
Note that the value r is unknown to the MB. Hence, it is
not possible (at least not feasible) for the MB to figure out
what r is. Thus, an average case r would suffice for actual
applications.

The security goal of our proposed protocol is to provide
indistinguishability for unmatched traffic. At a high level,
given encrypted tokens that are not equal to any keyword in
the rule set so far, no polynomial-time adversary can infer
any information of those tokens. However, when the given
encrypted tokens are keywords, the adversary can know that
they are in the keyword set, while not learning anything else
about the underlying keywords.

To evaluate the security feature of our encryption scheme,
first we give the definition of the Decision Diffie-Hellman
Problem (DDH).

Definition 2 (Decision Diffie-Hellman Problem (DDH)):
A group family G satisfies the DDH assumption if there is
no DDH algorithm A for G, such that for some α > 0 and
sufficiently large n:

|Pr[A(G, g, ga, gb, gab) = true]

−Pr[A(G, g, ga, gb, gc) = true]| > 1
nα

Then we can define the indistinguishability of our proposed
protocol via the following security game.

Definition 3 (Security Game): Consider the protocol with
algorithm (Setup, Enc) and associated message space M.
Let A be a p.p.t. adversary. The security game ExpA(1λ) is
defined as follows:

1) salt0, d← Setup(1λ)
2) T 0 = (t01, · · · , t0n), T 1 = (t11, · · · , t1n)← A(1λ)
3) b

$← {0, 1}
4) c1, · · · , cn ← Enc(salt0, d, tb1, · · · , tbn)
5) b′ ← A(c1, · · · , cn, )
6) If b′ = b, output 1.

We say that the protocol is secure if for all p.p.t. adversaries
A′s, and for all sufficiently large λ:

Pr[ExpA(1λ) = 1] ≤ 1
2

+ negl(λ)

Based on the above definitions, the proposed proto-
col achieves above-mentioned security goal as stated in
Lemma 1 below.

Lemma 1: Assuming the intractability of the DDH problem,
then our proposed keyword matching protocol in Section IV-B
is secure for those tokens that are not in the rule set.

Proof: If there is an attacker A at the MB who is able
to learn the private value of any incoming encrypted token
from S with non-negligible probability, then we can use this
attacker A as a black-box to construct an algorithm that can
solve DDH efficiently.

More specifically, given an instance of DDH (g, ga, gb, z),
we want to build an algorithm C that uses A’s ability to solve
for such b. To do that, we can construct an algorithm C that
will act as a challenger in the security game played by A,
which is proceeding as follows:

Setup Phase: C defines salt0, d as in Section IV-B, and
computes h = gsalt0 = ga mod n2 and k = gd = gb

mod n. Then h, k will be sent to A as the public parameter
for the protocol.

Challenge Phase: A submits T 0 = (t01, · · · , t0n) and T 1 =
(t11, · · · , t1n). C flips a coin b from {0, 1} and then encrypts T b

set of tokens via computing ci = (ga)tb
i ) · (gab)tb

i , and then
forwards this set of {c1, · · · , cn} to A.

Output Phase: The adversary A outputs b′. If b′ = b,
A wins.

We can see that the algorithm C is constructed as a chal-
lenger to A. Now we can check from below that ci is of the
correct form as a ciphertext encrypting the plaintext tbi in our
proposed protocol.

(ga)tb
i ) · (gab)tb

i = (gsalt0)tb
i ) · (gad)tb

i = gsalta·tb
i

where salta = salt0 + ad. This is a valid ciphertext since
A doesn’t have the knowledge of gdt for unmatched token t
and thus can’t decide gkdt where k ∈ Z. Therefore, from
the perspective of the attack A, he is interacting with his
challenger in a security game for the proposed protocol.

Finally, C determines that in the instance (g, ga, gb, z),
z = gab if A outputs b′ = b; otherwise, decides z �= gab.

Note that A has the ability to break the proposed protocol.
Hence, if it is indeed z = gab, then all ciphertexts in
{c1, · · · , cn} are of the correct form, and thus A decides
whether they are ciphertexts of T 0 or T 1. If z �= gab, then
all ciphertexts will become random values, and thus A will be
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likely to fail with probablity 1/2. Thus we have the advantage
of A as

AdvA = Pr[A(1λ)wins]− 1
2

As a result, C also has advantage equal to AdvA. However,
there is no known algorithm that can efficiently distinguish
DDH problem, which indicates that C has negligible prob-
ability of distinguishing DDH problems. This means that
AdvA is also negligible, that is, AdvA ≤ negl(λ). Therefore,
there is no such adversary A in the MB that can break
the indistinguishability of unmatched tokens in our proposed
protocol. �

On the other hand, the security provided by our protocol
also depends on the security of the used hash function. Note
that a secure hash function requires that it is infeasible to
recover a message input from its hash value. Now we see that
our protocol meets the security goal as long as the parameters
for the hash function and the Discrete Logarithm Problem are
appropriately set.

Regular Expression Evaluation Recall that in our pro-
tocol for regular expression evaluation, each incoming
encrypted token over the SPA connection is of the form
c = gsaltk·m mod n. As we have proved Lemma 1 and
each token is 5 bytes long, the plaintext space for m is
about Θ(2565) = Θ(240). Apparently, this can’t be dealt
with by brute-force method within polynomial time. This
indeed prevents our protocol from being vulnerable to brute-
force attack, but it causes the DFA for performing regular
expression evaluation to be of a tremendous size, because the
transition options (i.e., the size of DFA’s alphabet) from state
to state is linear to the number of possible cases for one token
(about Θ(240)). Apparently, this would not be acceptable in
real life applications. Therefore, our protocol employs the
techniques of Yao’s garbled circuits [44] (or a similar garbled
technique as shown in Section IV-C) to keep the DFA size
small while providing desired security. Then 1-out-2 oblivious
transfer [22] comes in to help R know the random strings
corresponding to the inputs to the circuit without letting
the MB learn what strings R gets. With the combination of
these two techniques, our protocol can guarantee that the MB
can’t learn the benign tokens and R knows nothing about
the underlying structure of the regular expression. Formally,
we can summarize our security guarantee as:

Lemma 2: The protocol is fully-secure against a mali-
cious receiver and is private against a honest-but-curious
middlebox.

Proof: As our protocol is built upon the techniques
in [26] and [37], one can refer to them for a detailed
proof. �

Malware Detection via Machine Learning: Recall that this
procedure heavily depends on the homomorphic properties as
stated in Section IV-A. All the major computations of the
machine learning process are performed within the MB and
only the encrypted classification result will be forwarded to
R. Thus, the desired security guarantees for this operation are

1) R doesn’t know the parameters of the trained machine
learning model.

2) The MB can’t learn the classification result.
Unlike the regular expression operation, no major computation
is done by R except decrypting the classification result. It is

easy to see that our proposed protocol achieves the security
goal (i), because R only has the knowledge of the classification
result and the input features, which are not enough to solve
for all the unknown parameter variables using one equation.
As for the security goal (ii), it is a result stemming from
both the two homomorphic properties in Section IV-A and the
above security analysis of the keyword matching operation.
One can see that the encryption is also similar to Paillier
cryptosystem, and can refer to [35] for a detailed proof.
Specifically, on one hand, the two homomophirc properties
provided by our encryption method ensure that the resulting
ciphertext from exponentiation and multiplication is of the
correct encrypted form, i.e., gsaltk·m′

with m′ as the resulting
plaintext; on the other hand, we have proved above that no
attackers in the MB can learn any private value that is not a
keyword from a well-formed ciphertext. Therefore, with these
two guarantees, no attackers in the MB is able to derive the
result produced by the machine learning process, which is our
security goal (ii). Furthermore, as s (salt) used in encrypting
the n-grams is different from the salt used for encrypting
tokens (Eq. 2), the MB cannot correlate an n-gram with any
keyword token even if their plaintexts are the same.

V. SYSTEM IMPLEMENTATION

In this section, we show a detailed implementation of
SPABox for the RG, clients and the MB.

On the Rule Generator Side: LIBSVM 3.21 library [21] is
modified and used for training a SVM model.

On the Client Side: We implement SPABox for clients in
C on top of OpenSSL-1.0.2d library [6]. We also modify
SSL handshake process in the OpenSSL library such that we
can extract AUXInfo. GMP 6.0.0 library is used to convert
each token, which we choose to be 5 bytes long, into a large
integer (mpz_t format) and then hash and encrypt each token
as described in Eq. 2 using the corresponding large integer.
We choose g, salt0, s, d, n and N2 to be 80, 20, 20, 10,
160 and 4096 bits, respectively. The hash function we use is
SHA-1. Based on our security analysis, r is set to be between
20 and 40. When S opens a connection, it creates two sockets,
one for SPABox handshake, sending normal HTTPS traffic and
the other one for the encrypted token transmission. Features
for ML are sent after the tokenized traffic. The implementation
of R is similar to that of S with additional implementation of
garbled circuit [32] and OT [22]. If R successfully matches
the traffic with the regular expression sent by the MB or gets
a positive result for malware, it stops the connection.

On the Middlebox Side: We implement the MB in Click
modular router [28] with DPDK [1]. We build both THT
and HHT based on Google dense hash map [2]. We let THT
start with 65,536 slots and resize when it’s more than 50%
full. For keyword matching, half of all the threads are used
for matching encrypted tokens in the THT, and one thread
is used to search over the HHT if there are keyword tokens
matched. If a rule is matched and no further regular expression
evaluation is needed, the MB would block the connection and
notify R; if regular expression needs to be run on the receiver
side, [22] is used for oblivious transfer of the input key strings
corresponding to a garbled DFA. The rest of the threads are
used for malware detection which is implemented based on
GMP 6.0.0 library. If the connection is not blocked, the ML
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TABLE II

ENCRYPTION MICRO-BENCHMARKS AT S COMPARING
SPABOX AND BLINDBOX

classification result is sent together with other traffic to R.
The MB and the clients are connected with a 1Gbps LAN on
campus.

VI. PERFORMANCE EVALUATION

To demonstrate that our proposed protocol is practical,
in this section, we show the performance evaluation of
SPABox on both clients and the MB sides. SPABox requires
(i) extra tokeninzation and encryption on client side; (ii) build-
ing and searching over multiple hash tables, garbling and OT
for regular expression evaluation and performing classification
on the MB side. The statistics shown in this section are the
average results.

A. Data Sets

Our keyword rule set from the Snort Emerging Threats [10]
has around 3K rules, which contains 11,202 keywords and
21,035 distinct keyword tokens.

For malware detection, we use two different data sets: a
malware data set and a benign data set. Our malware corpus
contains 17258 malicious program from VX Heaven [12]
and Microsoft Malware classification Challenge [4], includ-
ing different malware families that represent different types
of malware. Our benign data set contains 1000 legitimate
executables and Dynamic Linked Librarys (DLLs), most of
which are system files gathered from the machines running
on our campus. We use 70% of the files as the training set
and the rest 30% as the testing set.

We run SPABox client and the MB over synthetic traffic
which contains data sets used for malware detection, payload
extracted from ICTF2010 network trace [3] and 36 hour-long
unencrypted real world traces collected at the access link going
in and out of our campus.

B. Performance

We now investigate the performance of SPABox at clients,
the MB and the network. To the best of our knowledge, Blind-
box [38] is the only system that enables part of the DPI func-
tions considered in our paper over encrypted traffic, namely
keyword matching and regular expression. We implement the
encryption method, and keyword matching algorithm used in
Blindbox and compare them with SPABox. All statistics are
average results.

1) On the Client Side: Two desktops equipped with Intel
Core i7 processors and 16GB memory are used to run our
client prototypes. The machines are multicore, but we only
use one thread per client (except for throughput test). Hyper-
threading is enabled. The CPU supports AES-NI instructions
so that we can compare our solution with the Blindbox.

How long does it take for S to encrypt a token?
Table II shows the micro-benchmarks for encryption using
SPABox and Blindbox. In SPABox, encryption of one 5-byte
block takes 1015ns on average. This timing result includes the

Fig. 4. Regular expression evaluation time.

Fig. 5. End-to-end delay due to OT.

time for converting a token into a large integer, hashing with
SHA-1 and encryption. Compared with Blindbox, our solution
takes 9× more time. The main reason is that Blindbox takes
advantage of hardware support for AES encryption. Without
hardware support, Blindbox takes similar amount of time as
SPABox. Compared to Paillier, our encryption method saves
almost 20× time.

How long does it take for R to evaluate regular expression?
How much overhead does OT incur? In SPABox, R needs to
perform regular expression evaluation in case the MB finds the
traffic suspicious (by keyword matching). This process adds
more computation overhead on the receiver side. Fig. 4 shows
the regular expression evaluation time at R given different
input string lengths (x-axis) and DFA sizes (y-axis). It shows
that the evaluation time increases linearly as the input size
grows, but slowly as the number of states increases. This is
because for each bit, only one hash calculation is required,
which dominates the evaluation time. The time for processing
regular expression can be further decreased by optimizing the
underlying data structure (i.e., DFA) [14], [33], but it is beyond
the scope of this paper.

Another overhead when evaluating regular expression
comes from OT. To meet the performance requirement, we use
the OT implementation in [22]. This protocol bootstraps off
Diffie-Hellman key-exchange protocol [23], and therefore is
very efficient. We evaluate the total end-to-end delay when
a regular expression is needed with the real world traces as
shown in Fig. 5, including both the network delay and the
delay caused by OT itself at the MB and R. It is clearly
that the delay caused by OT grows slowly as the input size
increases, and it will be within the same order of magnitude
as the network delay, which means that the overhead caused
by OT itself is quite limited.

How accurate is the malware detection? To answer this
question, we first should find out what the best n value is
for n-grams. Besides, we also need to determine how many
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Fig. 6. Malware detection accuracy.

Fig. 7. Client throughput vs. CPU utilization.

features to select from each file while balancing performance
and overhead (i.e., computation and bandwidth overhead).
Fig. 6 shows the malware detection accuracy using SVM.
Accuracy is defined as true positive rate, which measures pro-
portion of positives that are correctly identified as a malware
program. Although, using top 500 most frequent 6-grams gives
the most accurate classification result, we choose K = 400
because it leads to smaller communication overhead while still
achieving relatively high accuracy. Therefore, we use 5 bytes
as the sliding window for tokenization (see Section IV-B for
the other two reasons) and select top 400 n-grams as features
for malware detection in our implementation. The detection
accuracy cannot be easily improved due to the limitation of the
kernel function we use. How to enable other kernel functions
and classification models are discussed in Section VIII-B.

What is the throughput of a client?As our proposed encryp-
tion method takes longer than the one in Blindbox, we expect
that SPABox gives a lower throughput. Fig. 7 shows the
costs for encryption at the sender side with two cores and
hyper-threading disabled. These numbers include the time for
tokenization, token selection (for malware detection), hashing
with SHA-1, encryption and transmission process. At 5Mbps,
the encryption cost is very limited as CPU can continuously
generate data; but when the throughput increases to 23Mbps,
CPU at the sender side can no longer keep up. This overhead
can be mitigated in two ways: (i) tokenization, hashing and
encryption can be further parallelized with extra cores easily;
(ii) we can also use a delimiter-based tokenization instead
of window-based tokenization [38] to reduce the number of
generated tokens. Nevertheless, the throughput achieved by our
solution is enough for a typical broadband home uplink and
applications dealing with small files. R incurs similar cost to
S, as R must check that the encrypted tokens sent by S match
the plaintext recovered from SSL.

2) On the Middlebox Side: Our MB prototype is imple-
mented on a server with two 2.0GHz Xeon E5335 cores and
16GB RAM. The CPU doesn’t have AES instruction support.

How long does it take for the MB to match keywords? How
about time taken to run machine learning? To show the effec-
tiveness of our method, we compare the keyword matching

TABLE III

KEYWORD MATCHING AND MACHINE LEARNING MICRO-BENCHMARKS
AT THE MB COMPARING SPABOX AND BLINDBOX

performance of SPABox and Blindbox. Due to the lack of AES
hardware support, we implement the MB on a desktop with
Intel Core i7 and 8GB memory for comparison with Blindbox.
Table III shows the detection micro-benchmarks comparing
Blindbox and SPABox with hpyer-threading enabled. For
the first case where the MB needs to compare the received
encrypted token over the SPA connection with one keyword
token, Blindbox can finish the comparison in 27 ns while
SPABox increases the value to 103 ns. Most of the overhead
comes from hashing the encrypted token, since we first need
to convert each token of mpz_t format into a string and then
hash it. However, for 3K rules (all keywords are tokenized),
SPABox only takes 114ns to match a token while Blindbox
would use 162ns on average. This is because our implementa-
tion uses a hash table rather than a searching tree for keyword
searching. To match one keyword which has 4 tokens on
average, SPABox can save 29.5% time compared to Blindbox.
To perform classification, it only takes 239μs at the MB.
Apparently, the incurred overhead is quite small.

What is the memory overhead for storing THT at the
middblebox? To keep up the searching speed, we use hash
tables instead of searching tree in our algorithm for keyword
matching. Each keyword token is hashed and stored in the
hash table such that the MB can quickly find out if one
encrypted token over the SPA connection is present in the
rule list. One possible defect of our approach is more memory
usage. Specifically, if using a searching tree, the total memory
consumption is ∼0.822MB, while the hash table we use
has a factor of 2-3 memory overhead. In our prototype,
we measure a memory usage of ∼3MB. Even if using hash
table increases the memory usage, we consider it an acceptable
trade-off. Moreover, with the emergence of network func-
tion virtulization (NFV) technology [46], middleboxes could
be “virtualized” and implemented on standard server which
has “unlimited” memory. Therefore, the memory overhead
incurred by THT is negligible.

What throughput can the MB sustain? As our client
prototype cannot generate encrypted tokens fast enough
(up to 23Mbps with two cores), we pre-encrypt the data and
use it as traffic. In our experiment, we measure an average
throughput of 69Mbps at the MB. This number includes all
three DPI functionalities supported by SPABox. The major
overhead at the MB comes from hashing all encrypted token
received from S, while searching over the THT and performing
classification take limited time. If a dedicated core is used
for hashing and searching, the throughput can be increased to
81Mbps. As hashing all encrypted tokens can be paralleled
easily, the throughput can be further boosted.

3) Network Overheads: What overhead does connection
setup incur? One main advantage of SPABox is that it
doesn’t require interaction between clients and the MB dur-
ing the connection setup stage. Assume that the rule set
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TABLE IV

CONNECTION SETUP OVERHEAD MICRO-BENCHMARKS
COMPARING SPABOX AND BLINDBOX

contains 3K keywords, and that the throughput of the link
between clients and the MB is 20Mbps (typical home broad-
band link). SPABox can finish the setup within 40μs on client
side (see Table IV), while Blindbox requires lengthy interac-
tion between clients and the MB. Specifically, in Blindbox,
the garbled circuit for each keyword token is 599KB.
To compute all the garbled circuits and transmit them, it would
take more than 90min and impose huge computation burden
on clients. Phones or tablets would take a even longer time.
After receiving all the garbled circuits, the MB needs 7.5s
to evaluate them all. On the contrary, in SPABox, the MB
needs 228 byte information from client and the MB can set up
THT within 17ms after receiving the information. Compared
with Blindbox, SPABox has a better support for short-lived
connection and mobile users.

What is the overall bandwidth overhead? Throughout the
experiment, we see a bandwidth overhead a little less than
20 times. The reason is twofold:

a) We use window-based tokenization; b) only very small
overhead is incurred due to regular expression and malware
detection.

Although there is substantial bandwidth overhead, we can
find that the major source of overhead is tokenization. There-
fore, it can be mitigated easily: instead of using window-based
tokenization, we can switch to delimiter-based tokenization
and only tokenize non-binary data as in Blindbox. However,
delimiter-based tokenization may fail to detect attack keywords
that do not start and end before or after a delimiter. One can
choose whichever method that is best for a specific application.

VII. RELATED WORK

Searchable Encryption: To perform keyword matching over
encrypted data in DPI scenario, one naturally considers search-
able encryption. There have been many work on searchable
encryption [15], [16], [39] since its introduction. However,
applying these existing work to DPI for keyword matching
requires the entity who generates search tokens to encrypt the
rules, which will probably expose sensitive rule set information
to end users. Moreover, none of the existing schemes meet
both security and network performance requirements simulta-
neously. Specifically, on one hand, deterministic searchable
encryption schemes [15] leak pattern information, that is,
whether two words (match a rule or not) in the encrypted
traffic are the same, even though these schemes enable the MB
to build indexes to process each token faster. This weak privacy
guarantee allows an attacker to perform frequency analysis.
On the other hand, randomized schemes [39] provide stronger
security guarantees because of the existence of random salts
in their generated ciphertexts. However, the usage of random
salt prevents the MB from building index structure for fast
token matching, which results in a low throughput at the MB.

Regular Expression Evaluation: Recently, there have been
some work [37], [43] on developing protocols to enable

regular expression searches over encrypted data. Generally,
these interactive protocols allow two party to privately evaluate
DFA over encrypted files. A non-interactive case is a func-
tional encryption scheme proposed by Waters [42]. This
scheme ties a secret key to a specific DFA so that it can
be used to decrypt a ciphertext only if the DFA accepts a
fixed string associated with the ciphertext. However, these
schemes can only support regular expression, but not other DPI
functionalities discussed in our paper. Moreover, they are not
able to meet the network performance requirement, especially
the functional encryption scheme.

Machine Learning: Some work [17], [18] focused on per-
forming ML over encrypted data. Bos et al. [17] work showed
how the computation of medical prediction functions over the
encrypted medical data can be performed by a third party using
fully homomorphic encryption. Bost et al. [18] constructed
three major privacy-preserving classifiers, including hyper-
plane decision, Naïve Bayes, and decision trees. However,
their schemes relied on fully homomorphic encryption (FHE),
which results in significant overheads due to the fact that
existing FHE constructions are still not practical. As a con-
sequence, they are not able to meet the network performance
requirement. Moreover, the protocols themselves in [18] are
pretty complicated and require multiple rounds of interactions
between S and the MB.

VIII. DISCUSSION

A. Protocol Using Paillier Cryptosystem

The encrypted token in our protocol is somewhat similar to
that in Paillier encryption [35]. Here we point out that why it
is not a good idea to use Paillier cryptosystem directly.

Recall that in Paillier cryptosystem, the ciphertext is of the
form c = gm · rn mod n2 with m as the message to encrypt.
However, directly using Paillier encryption in our application
scenario can’t provide the MB with the ability for keyword
matching. Precisely, with only c and no rn mod n2, the MB
cannot perform keyword matching operations over encrypted
tokens. Unfortunately, if the MB can possess c and rn

mod n2 at the same time which makes the matching operation
possible, the resulting protocol becomes insecure since the MB
can derive gm via dividing c by rn mod n2. Hence, to have
a secure protocol based on Paillier encryption (for exposition,
we call this Paillier-based protocol ΠP ), a straightforward
way would be to introduce a new random element salt
in Zn. Now the encrypted token in protocol ΠP becomes
c′ = gsalt·m · rn mod n2, and the MB will receive c′, rn

mod n2 and gsalt mod n2 for keyword matching operations
over every token. Again observe that with rn mod n2 and
n2 which is part of R’s public key, the MB can compute r−n

mod n2 and then derive gsalt·m mod n2. Thus, rn mod n2

becomes unnecessary in protocol ΠP for the MB to perform
keyword matching.

Now protocol ΠP encrypts a token as gsalt·m mod n2

which is exactly Eq. 1. To perform keyword matching, the MB
would need gsalt·m mod n2 and gsalt mod n2. However,
this random salt prevents the MB from performing efficient
search for keyword matching operations. Specifically, the MB
needs to encrypts each keyword, denoted by w, in rule set
by computing (gsalt)w. The MB has to compare a received
encrypted token with all of the encrypted keywords, whose
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number will probably be daunting. To improve searching
performance at the MB, salt can be defined as pseudorandom.
This change gives our proposed protocol. Moreover, this
method further reduces the communication overhead since
now S only needs to transmit gsalt once.

B. Extensions for Malware Detection

In our protocol, we use linear kernel function with SVM
as the method for malware detection. Applying other nonlin-
ear kernel functions is also possible with our protocol. For
example, consider Gaussian kernel k(x, x′) = exp(−||x −
x′||2/2σ2). Then the decision function in Eq. 3 can be rewrit-
ten as f(x) =

∑
i αiyik(x, xi) with those xi’s that constitute

the support vectors. A straightforward way to perform this
SVM model involves a one-round interaction between the MB
and R. At a high level, the MB first securely computes (x−xi)
for all support vectors, separately, and then forwards these
generated results to R. Then R can decrypt these results to
get (x− xi) and then calculate all k(x− xi) = exp(−||x−
x′||2/2σ2), which will be encrypted and sent back to the MB
for computing the last step f(x) =

∑
i αiyik(x, xi). Note that

all of the computations done in the MB are performed in a
privacy-preserving way based on the homomorphic properties
stated in Section IV-A. Finally, the MB sends the encrypted
classification decision to R. Note that this method may give
better classification results at the expense of more overhead
on both clients and the MB sides.

Another possible extension is to use other ML models
instead of SVM, such as Naïve Bayes and Decision Trees [18].
However, it might incur much more overhead and lose the
transparency of the MB. Normally, they would involve more
than one round of interaction between the MB and R.

C. Comparison With Blindbox

Although SPABox has an architecture similar to that of
Blindbox, it uses different approaches. First, Blindbox uses
symmetric encryption schemes as its basis, while SPABox uses
public-key encryption schemes. While this choice lowers the
throughput, more operations can be supported (e.g., machine
learning), and the connection setup overhead can be greatly
avoided in our system. To compensate for the reduced through-
put, we build a multi-layered hashtable and carefully design
our encryption scheme to accelerate the keyword look-up at
the MB. Second, we push the regular expression evaluation to
end users while Blindbox does it at the MB by decrypting the
traffic. Our design ensures that the traffic is kept encrypted
from end to end and the overhead incurred at the receiver side
is limited. Note that the MB is necessary in both BlindBox and
SPABox designs to protect the rule set (otherwise end users
will have access to it), and therefore our method serves as a
tradeoff between R’s performance and the purpose of offering
regular expression evaluation functionality and traffic/rule set
privacy simultaneously.

IX. CONCLUSION AND FUTURE WORK

Whether or not the use of HTTPS could lead to the death
of DPI has long been a hot topic of debate. In this paper,
we have presented SPABox, the first middlebox based system
that supports both keyword based and data analysis based
DPI functionalities over encrypted traffic, while guaranteeing

the privacy of the user data at the middlebox. The most
notable feature of SPABox is that protocol setup does not
require any interaction or data transmission between a mid-
dlebox and clients. SPABox also enables privacy-preserving
regular expression evaluation and machine learning using
SVM for malware detection. The performance evaluation of
SPABox demonstrates that it provides privacy-preserving DPI
with a limited overhead. To further improve the performance,
we are working on privacy-preserving regular expression
evaluation schemes, as part of our future work, which can
be integrated with our solution in order to fully support
outsourcing DPI.
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